Первая часть материала проста, на мой взгляд, и предназначена для общего понимания места и значения кислородного датчика в регулировании топливной смеси.
Топливное регулирование
В часто задаваемых вопросах по топливному регулированию малоопытные автолюбители зачастую не представляют то:
1) Как и для каких режимов работы двигателя используется кислородный датчик КД (лямбда-зонд), почему он переключается, почему два датчика, как заменить датчик, возможно ли убрать датчик – и т.п.
2)Как осуществляется топливное регулирование в современных двигателях с распределенным впрыском с использованием лямбда-зонда (Л-зонда).
Это попытка обобщить уже известный материал по этим вопросам. Некоторые вещи приходилось домысливать, т.к. мы не знаем секреты производителей машин.
Любые поправки к представленному материалу принимаются для обсуждения.
Л-зонд
С конца 80-х годов у большинства автомобилей появилась такая деталь, как датчик содержания кислорода в выхлопных газах. Лямбда-зонд, О-2 датчик, кислородный датчик (Oxygen Sensor) - так по разному могут называть эту небольшую, но важную детальку. Это связано с началом выпуска автомобилей с каталитическим нейтрализатором выхлопных газов.
14.7 частей воздуха и 1 часть топлива - именно такой состав обеспечивает максимальное сгорание топливно-воздушной смеси. Лямбда-зонд предназначен как раз для того, что бы помогать "мозгам"(ECU) поддерживать эту пропорцию. В зависимости от содержания кислорода в выхлопе датчик выдаёт соответствующее напряжение и ECU корректирует состав смеси путем изменения количества подаваемого в цилиндры топлива.
Не буду подробно пояснять конструкцию КД и понятие бедной/богатой топливной смеси. Об этом много подробно сказано. Хочу только обобщить. В сути своей КД – это батарейка с керамическим электролитом, содержащим диоксид циркония и электродами из платины. Электролит оживает только при температуре 300-350 С, поэтому КД обязательно надо разогревать. Разность потенциалов между электродами возникает при соприкосновении электродов с воздушной смесью с различным содержанием кислорода. Элемент исполнен таким образом, что при снижении количества кислорода у одного электрода ниже критического уровня ЭДС этой батарейки резко растет от 0 до 1 вольта (и наоборот). Критический уровень кислорода соответствует остатку кислорода при сгорании оптимальной топливной смеси. Это свойство КД используется для организации регулирования топливной смеси через блок управления ECU. Любой процесс регулирования носит колебательный характер. В процессе регулирования обязательно наличие связи (обратная связь) между блоком управления и датчиком отслеживающим состояние регулируемого процесса. Отсюда и следует, раз колебательный процесс – значит колеблется (переключается) датчик.
Итак признаком нормального топливного регулирования является колебательное изменение напряжения на КД. При нормальной работе системы подачи топлива напряжение, вырабатываемое датчиком кислорода, может изменяться несколько раз в секунду. Это позволяет приготавливать и поддерживать необходимый состав топливной смеси практически на любом режиме работы двигателя. Наличие КД обеспечивает регулировку топливно-воздушной смеси на оптимальном уровне 14.7 частей воздуха и 1 часть топлива. При этом коэффициент избытка воздуха Л кислородного датчика колеблется между 0,98 и 1,02 и его среднее значение Л=1.
Л-регулирование не осуществляется на следующих режимах работы двигателя:
- пуск и прогрев;
- режим обогащения топливной смеси при ускорении;
- режим мощностного обогащения;
- режим обеднения при замедлении;
- режим отключения подачи топлива при торможении двигателем (отсечка);
- режим выключения подачи топлива в аварийных и экстренных ситуация;
- режим продувки двигателя.
Все эти режимы относятся к регулированию при открытом контуре (отсутствие обратной связи блока управления с КД), т.е. ЕCU не учитывает показания кислородного датчика, осуществляя регулирования по данным других датчиков.
Режим пуска.
При включении зажигания контроллер включает электробензонасос, который создает давление топлива в рампе форсунок.
Контроллер обрабатывает сигнал датчика температуры охлаждающей жидкости для определения необходимого для пуска состава топливовоздушной смеси.
Для ускорения пуска двигателя контроллер формирует дополнительный асинхронный импульс одновременного включения всех четырех форсунок, длительность которого зависит от температуры охлаждающей жидкости.
На холодном двигателе длительность импульса впрыска увеличивается, а на прогретом ! длительность импульса уменьшается.
В процессе прокрутки двигателя система осуществляет синхронный впрыск топлива.
ВНИМАНИЕ.
Если при прокрутке двигателя (частота вращения коленчатого вала двигателя менее 250 об/мин) дроссельная заслонка полностью открыта, двигатель не запустится, т.к. при этом импульсы впрыска на форсунки инжектора не подаются.
Режим продувки "залитого" двигателя.
Если двигатель "залит", (т.е. топливо намочило свечи зажигания), он может быть очищен путем полного открытия дроссельной заслонки при прокрутке. При этом контроллер не подает импульсы впрыска на форсунки, и двигатель продувается воздухом.
Режим продувки продолжается до тех пор, пока входной сигнал датчика положения дроссельной заслонки показывает, что положение дроссельной заслонки близко к полностью открытому (более 75%) и обороты двигателя после начала прокрутки не превысили 1000 об/мин.
Режим управления топливоподачей по разомкнутому контуру.
После запуска двигателя (обороты после начала прокрутки превысили 1000 об/мин) контроллер управляет подачей топлива в режиме разомкнутого контура. В режиме разомкнутого контура контроллер рассчитывает длительность импульсов впрыска без учета сигнала датчика кислорода. Расчеты осуществляются на базе сигналов датчика положения коленчатого вала, датчика массового расхода воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.
Режим обогащения при ускорении.
Если скорость открытия дроссельной заслонки превышает определенное значение, контроллер увеличивает подачу топлива, обогащая состав топливовоздушной смеси.
Режим мощностного обогащения.
Контроллер следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, когда необходима максимальная мощность двигателя. Для развития максимальной мощности требуется более богатый состав топливной смеси, что осуществляется путем увеличения длительности импульсов впрыска.
Режим обеднения при замедлении.
Если скорость закрытия дроссельной заслонки превышает определенное значение, контроллер уменьшает подачу топлива, обедняя состав топливовоздушной смеси.
Режим отключения подачи топлива при торможении двигателем.
Отключение подачи топлива при торможении двигателем происходит при выполнении следующих условий:
- температура охлаждающей жидкости выше 40 °С;
- дроссельная заслонка полностью закрыта.
- если контроллер определил наличие пропусков зажигания в одном или нескольких цилиндрах
- подача топлива в эти цилиндры прекращается и сигнализатор неисправностей начинает мигать;
- частота вращения коленчатого вала двигателя выше определенного значения (зависит от скорости автомобиля).
Отключение подачи топлива.
Подача топлива не производится в следующих случаях:
- зажигание выключено (это предотвращает калильное зажигание);
- коленчатый вал двигателя не вращается (отсутствует сигнал ДПКВ);
- частота вращения коленчатого вала двигателя превышает предельное значение (около 6200 об/мин).
Регулирование подачи топлива по замкнутому контуру.
Система входит в режим замкнутого контура при выполнении всех следующих условий:
1. Датчик кислорода достаточно прогрет для нормальной работы.
2. Температура охлаждающей жидкости выше определенного значения.
3. С момента запуска двигатель проработал определенный период времени, зависящий от температуры охлаждающей жидкости в момент пуска.
4. Двигатель не работает ни в одном из нижеперечисленных режимов:
-пуск двигателя,
-обогащение или обеднение топливной смеси,
-отключение подачи топлива.
Как взаимосвязаны катализатор и лямбда-зонд?
Для нормальной работы катализатора нужно обеспечить постоянное оптимальное соотношение воздуха и топлива в рабочей смеси, поступающей в камеру сгорания. В противном случае способность катализатора доокислять вредные примеси будет недостаточной и недолгой.
Учитывая вышесказанное, становится ясно, что катализатору необходимо наличие лямбда-зонда, а вот лямбда-зонду нужен ли катализатор? Будет ли он правильно работать, если катализатор, к примеру, удалён? Попробуем ответить: датчик стоит перед катализатором и измеряет содержание кислорода в газах именно перед ним, и после удаления катализатора так и будет продолжать измерять дальше, то есть наличие или отсутствие катализатора никак не влияет на сигналы, которые даёт верхний лямбда-зонд, на них влияет только количество кислорода. Другое дело, когда стоят два кислородных датчика - один до (верхний), а другой после катализатора (нижний датчик). На основании сигналов от нижнего датчика происходит дополнительная корректировка состава смеси. Содержание кислорода после прохождения газов через катализатор конечно же меняется, и вот тогда его (нижнего датчика) отсутствие может отрицательно сказаться на процессе образования топливно-воздушной смеси.
Можно ли отключать лямбда-зонд?
После замены катализатора на пламегаситель, наличие второго лямбда-зонда, как детали обеспечивающей в числе прочего качественную работу катализатора, становится не важным, поэтому часто возникает вопрос: можно ли эксплуатировать автомобиль совсем без нижнего лямбда-зонда? Здесь одного решения для всех нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограммировать ECU на режим работы без катализатора, как, например, у большинства BMW с мозгами Бош (Сименс не перепрограммируется). В этом случае после удаления катализатора меняется программа управления и второй лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограмирование невозможно и если неисправность датчика сильно влияет на работу мотора, тогда выхода нет - должен стоять исправный датчик. Так же у многих автомобилей неисправность или отсутствие л-зонда практически не сказывается ни на динамике, ни на расходе топлива, такой плюс есть, например, у большинства Тойот и Мерседесов начала 90-х годов. В таком случае можно спокойно эксплуатировать машину и без датчика, но конечно ещё лучше, когда всё в порядке.
Итак, нижний датчик, который устанавливается позади катализатора, измеряет содержание кислорода и этой точке. Это необходимо в следующих целях:
• чтобы оптимизировать регулировку подачи топлива;
• чтобы отслеживать старение верхнего датчика;
• чтобы контролировать работу катализатора.
Взаимозаменяемы ли датчики от различных автомобилей?
Лямбда-зонды отличаются друг от друга резьбовой частью, наличием подогрева, количеством проводов и соединительным разъёмом. А принцип работы и сам рабочий элемент у всех датчиков практически одинаковые. Поэтому если у вашего датчика три провода и резьба 18х1.5, то можете смело ставить универсальный датчик с такими же параметрами или, например, от ВАЗ 2110. Датчик работать будет правильно, а его надёжность и долговечность будет зависеть уже от производителя. Если не доверяете "жигулёвским деталям", а нужного вам датчика нет в наличии, то в магазинах можно найти универсальный датчик практически любого типа. Главное не перепутать при перепаивании провода. Даже различие резьбы не так страшно. На большинстве японских автомобилей резьба лямбда-зонда меньшего диаметра, чем у европейских, и если только датчик стоит не в чугунном коллекторе, то можно просто вварить гайку с нужной резьбой. Единственно нужно помнить о том, что попытка сэкономить небольшую сумму очень часто выливается в ещё большие потери, и прежде чем что-либо переделывать в своей машине, лучше как следует подумать.
Откручивание лямбды.
Не забудьте отключить минусовой провод от аккумулятора. Если хочется слушать магнитолу, то отключите только провода лямбды.
• Далее нужен: Ключ на 22х24, примерьте то, что подойдёт вам. Если справитесь с ним, то хорошо, а ежели нет, то берёте вариант два
• Понадобится: ключ газовый, дрель с тонкими свёрлами,отвёртка шлицевая (не тонкая), молоток. Что мы делаем: для начала попробуйте захватить лямбду газовым ключом, дёрнуть вниз; если не помогает, берём дрель.
• Начинаем сверлить. Лямбда очень прочная, так что, будьте готовы к паре сломанных свёрл.
• Затем берём отвёртку, вставляем её в отверстие от сверла; если повезёт, вы откручиваете лямбду.
• Если нет, то стучите молотком по ней, пока она не развалится. Затем газовым ключом откручивается всё, что осталось.
Есть еще один способ. Снять катализатор. И паяльной лампой или газосваркой нагреть место крепления лямбды. Дать остыть, а потом легко все выкручивается, без эмоций. Самый простой вариант, кстати.
О быстрых и медленных корректировках в следующем сообщении.